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Abstract—The unmodelled rotor dynamics in accelerated
flight have a negative effect in the robustness and performance
of an unmanned quadcopter, which could result in mission
failure in adverse conditions or rotor faults. The nonlinear
identification of an unmanned quadcopter rotor dynamics is
investigated in this paper. The rotor dynamics are considered in
terms of a first-order flapping dynamic model with the dynamics
estimated using the radial basis function (RBF) neural networks.
A RBF structure based on a continuous forward algorithm
(CFA) is implemented for the estimation of a longitudinal
rotor flapping dynamic coefficient. This was achieved through
optimal input design by the maximization of the spectral density
function and predicting the resonant frequency response from
the RBF output. This was computed at various trim speeds and
training data noise levels and compared with a linear model.
The prediction accuracy and robustness to noise of the CFA
algorithm proved that the proposed approach can result in
better understanding of quadcopter flapping dynamic for high
fidelity flight controller design.

Keywords—Nonlinear identification, quadcopter, Unmanned
Systems, rotor dynamics, radial basis functions

I. INTRODUCTION

The direct approach of using system identification for the
mathematical representation of unknown system dynamics is
well-known. This is mainly due to the difficulty of obtaining
accurate and practical models for control-design applications
from first-principles approaches [1]. Moreover, nonlinear
system identification has been utilized when the mapping
from the observed data (input-output) to a cost function
minimization regressor matrix is achieved only through a
nonlinear model structure [2], [3]. The nonlinear modelling
approaches used to characterize the dynamics of quadcopters
are employed due to the complex interaction of aerodynamic
forces and moments generated through rotating propellers
acting on the frame encasing a stabilizing feedback controller,
which in turn, provides input to the same propellers [4].

Although mechanically simple (compared to helicopters) and
low maintenance, quadcopter still exhibits highly-coupled
dynamics. However, the modelling and identification efforts
of quadcopters have mainly been near steady-state conditions
such as hover and constant forward flight [5], [6]. The

simplistic assumption of ignoring rotor dynamics due to
flapping angles and changes in the tip-path-plane (TPP)
is only valid provided the destabilizing transients during
accelerated flights, are within the control bandwidth of the
flight controller [7], [8] such as PID control [9].

In transitional flight, it has been shown that compensation
against blade flapping dynamics can only be achieved through
accurate modelling instead of further flight controller tuning
(in this case increasing the integral gain) [10]. This over-
sight on the aerodynamics could prevent accurate and robust
tracking which is the primary requirement in autonomous
high-speed manoeuvres or acrobatic flight. The problem of
singularities during a quadcopter vertical loop maneuver was
investigated by [11]. Underactuation during such a maneuver
was resolved using energy-based control which would not
have been possible otherwise.

A black-box approach has been used specifically to identify
a quadcopter longitudinal dynamics using radial basis func-
tion (RBF) neural networks trained with minimal resource
allocating network MRAN [12]. However, conventional two-
stage approach of selecting RBF centers and widths, then
computing the linear output weights through matrix pseudo-
inversion, such as the Orthogonal Least square (OLS) algo-
rithm [13], has often resulted in local minima issues and slow
convergence [14]. To speed up convergence and optimize the
computation of weights, center and widths, the continuous
forward algorithm (CFA) [15], hybrid forward algorithm
(HFA) [16] and more recently the extended Newton algorithm
(ENA) [14] have been developed. We have decided to make
use of modified CFA algorithm which uses a maximization
function for its line search algorithm. As far as we know, this
is the first time this has been applied for the modelling of
quadcopter dynamics.

The estimation of quadcopter rotor flapping dynamic using
RBF neural modelling is investigated in this paper. In Section
II, the quadcopter rotor dynamics are described. Section
III describes the identification methodology followed. The
CFA algorithm for RBF modelling is introduced in Section
IV. Section V discusses the results obtained followed by
conclusions and future work in Section VI.
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II. QUADCOPTER ROTOR DYNAMICS

The equations of motion of a quadcopter (shown in Figure
1) can be expressed with respect to the body-fixed reference
frame [17]:

mv̇ +m(ω̄ × v) = F (1)

I ˙̄ω + (ω̄ × Iω̄) = M (2)

where v = [u v w]T and ω̄ = [p q r]T are the vehicle
velocities and angular rates in the body-fixed frame respec-
tively. F = [X Y Z]T is the vector of external forces on the
vehicle center of gravity and M = [L M N ]T is the vector
of external moments. I = [Ixx Iyy Izz] are the mass moment
of inertia measured using a bifilar pendulum method, m is
the measured mass of the vehicle. The angular orientation of
the aircraft is described by the Euler angles (roll, φ, pitch,
θ, and yaw, ψ, respectively). The generalized thrust force of
an individual rotor is given as [18]:

Ti = CTi
ρ(ΩiRi)

2πR2
r (3)

where i = [1 − 4] represents the number of the rotors. CTi

is the ith rotor thrust coefficient which can be expressed as:

CTi
=
arσr

2

(
θ0

(
1

3
+
µ2
ri

2

)
+
µzri − λ0i

2

)
(4)

whereby the inflow velocities for the ith rotor can be ex-
pressed:

λ0i =
CTi

2ηw
√
µ2
ri + (λ0i − µzri)2

(5)

µri =

√
(ui − uwind)2 + (vi − vwind)2

ΩiRr
(6)

µzri =
wi − wwind

ΩiRr
(7)

σr =
2cr
πRr

(8)

where ar is the lift-curve slope of the propeller, cr is the

Fig. 1. Quadcopter Rotor forces and moments

root chord of the rotor blade (assuming constant chord), Rr
is the rotor blade length, θ0 is the pitch angle of the propeller
(assuming no blade twist). The inflow velocity λ0i is solved
through an iterative approach. In the case of transitional

flight, λ0i will typically not have a steady-state value. At
each ith rotor, the velocity components can be computed from
body-fixed velocities u, v, w and angular rates p, q, r:

ui = u+ Sui
Lfrr sin θfr (9)

vi = v + SviLfrr cos θfr (10)
wi = w +Rxiq +Ryip (11)

where Lfr is the length for airframe centre of gravity (COG)
to rotor hub, S̄u = [Su1

, ..., Su4
], similarly R̄x and R̄y are

arrays of cross-product signs due to angular rates. θfr is the
angular distance of each rotor to the airframe y axis. The
rotor torque Qr for the ith rotor can be computed:

Qri = CQρ(ΩiRr)
2πR3

r (12)

where the torque coefficient is given:

CQ = CT (λ0i − µz) +
CD0

σr
8

(
1 +

7

3
µ2
ri

)
(13)

Given that propeller aerodynamics are to solve numerically
(given the span-wise twist/washout, taper from the root chord,
vortex flow separation at the tips), wind tunnel data was
used for a 10 by 4.5 inch propeller which is used on the
H1 quadcopter [19]. This is shown in Figure 2. It is quite
evident that propeller thrust decreases dramatically in forward
flight (increased advance ratio due to negative pitch) above 15
m/s which coincides with more pronounced flapping dynamic
which is not taken into consideration during controller design.
Rotor-flapping dynamics was modelled by lumping each
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Fig. 2. Propeller Thrust/Torque coefficient - wind tunnel data

rotor and its flapping dynamic into tip-path plane dynamics
described (excluding feathering hinge dynamics) [20], [21]:

ḃ1i = −p− b1i
τe
− 1

τe

δb1i
δµv

vi − vwind
ΩiRr

(14)

ȧ1i = −q − a1i

τe

− 1

τe

(
δa1i

δµ

ui − uwind
ΩiRr

+
δa1i

δµz

wi − wwind
ΩiRr

)
(15)

293



τe is the effective rotor time constant. The longitudinal
dihedral derivative is given as:

δa1i

δµ
= 2Kµ

(
4θ0

3
− λ0i

)
(16)

Kµ is the scaling coefficient to include the stabilizing effect.
The longitudinal and lateral dihedral derivatives are equal in
magnitude and both cause the rotor to flap away from the
incoming air.

δb1i
δµv

= −δa1i

δµ
(17)

The upward heave movement of the rotor causes a higher lift
on the advancing blade which causes a moment on the rotor
hub. The same stabilizer scaling coefficient is used:

δa1i

δµz
= Kµ

16µ2
ri

(1− µ2
ri/2)(8 |µri|+ arσr)

(18)

Rotor flapping is the dominant effect on rotor moments.

Fig. 3. Rotor flapping approximation [22]

The restraint is approximated using a linear torsional spring
with constant stiffness coefficient Kβ . This is illustrated in
Figure 3. This results in a longitudinal (pitch) and lateral
(roll) moments:

Mk,lon = Kβa1i (19)
Lk,lat = Kβb1i (20)

Once flapping occurs, the rotor thrust vector tilts and con-
tributes to the body moments. Assuming the thrust vector
tilts proportionally to the rotor flapping angles, the total rotor
pitch and roll moments can be deduced as (N = 4 for a
quadcopter):

Lr =
∑N
i=1 (Kβ + Thr) b1i (21)

Mr =
∑N
i=1 (Kβ + Thr) a1i (22)

Nr =
∑N
i=1Qi (23)

where hr is the distance between the rotor head and the center
of gravity. The total rotor forces (not assuming small advance
ratios) are given as:

Xr = −
∑N
i=1 Tisin(a1i) (24)

Yr =
∑N
i=1 Tisin(b1i) (25)

Zr = −
∑N
i=1 Ticos(a1i)cos(b1i) (26)

III. ROTOR-FLAPPING DYNAMIC IDENTIFICATION

A. Linear Model Structure

The linear model of the quadcopter was obtained through
trimming the above model (including the rigid-body dynam-
ics) at five trim conditions: hover, 5m/s, 8m/s, 12m/s, 17m/s
and 20m/s. This resulted in the reduced linearised model
given as:

u̇ = Xθθ +Xqq +Xuu+
∑N
i=1Xa1ia1i +Xδlonδlon(27)

v̇ = Yθφ+ Ypp+
∑N
i=1 Yb1ib1i +Xδlat

δlat (28)
ẇ = Zθθ + Zqq + Zww + Zδmotδmot (29)

ṗ = Lpp+
∑N
i=1 Lb1ib1i + Lδlat

δlat + Lδrud
δrud (30)

q̇ = Mqq +
∑N
i=1Ma1ia1i +Mδlonδlon +Mδmotδmot(31)

ṙ = Nrr +Nδlat
δlat +Nδrud

δrud (32)
˙a1i = A1i

q q +A1i
a1ia1i +A1i

δlon
δlon (33)

˙b1i = B1i
p p+B1i

b1i
b1i +B1i

δlat
δlat (34)

where N represents the number of rotors. The above equa-
tions form the basis of the neural network identification
method described below and was arrived through zeroing
coefficients below 1e-3. With specific focus on the rotor
flapping dynamics, the pitch-rate response in the frequency
domain can be described in terms of its natural frequency
[23, pp. 302]:

ωn =

√√√√− N∑
i=1

Ma1i (35)

The high values of flap stiffness (due to large hinge offset)
which is the case for quadcopters, provides an increase
in response frequency. Given maximization of the spectral
density generated (defined in Section III-C), the associated
frequency is assumed to be resonant frequency for a second
order system defined as:

ωR = ωn
√

1− 2ζ2 (36)

This then enables the computation of the rotor flapping dy-
namic (in this paper only longitudinal dynamics are observed
and identified) based on the maximization of the signal
spectral energy.

B. Model structure Determination

In order to avoid parameter estimation inaccuracies and
unnecessary model complexity, the collinearity amongst de-
pendent and independent variables must be quantified. The
correlations between independent variables xi and output
variable y is computed as such [24, pp. 200]:

ρi =

∑N
k=1(y(k)− ȳ)(xi(k)− x̄i)√∑N

k=1(y(k)− ȳ)2
∑N
k=1(xi(k)− x̄i)2

(37)

Each signal is pre-conditioned prior through computing the
signal mean and standard deviation. If both statistics are
below 1e-3, the signal is removed for the data-set. Out of
the remaining data-set, the four highest signals are stored for
RBF training using the CFA algorithm.
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C. Optimal Input Design

The main objective of flight testing for system identification
is the formulation of the flight maneuvers that will minimize
time and peak response while maximizing information con-
tent. This can only be achieved with a priori knowledge of
the model structure and dynamic response [23, pp. 85]. Time
domain maneuvers such as doublet, step and 3211 inputs can
be analyzed using the power spectral function defined as [24,
pp. 38]:

E(ω) = 2∆t2
1− cosΩ

Ω2
× N∑

i=1

V 2
i + 2

N∑
j=1

cosjΩ

N∑
i=1

ViVi+j

 (38)

where N is the number of impulses with a time duration
∆t and amplitude V and normalized frequency Ω = ω∆t.
Figure 4 shows a typical input/output mapping for maneuver
design. Figure 5 shows the normalized power spectral output
as a function of step-size length. It can be noticed that the
optimal step size is between 130-140 milliseconds.
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Fig. 4. Input/Output design for rotor dynamics identification
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IV. NEURAL NETWORK MODELLING

An analytical framework for both network construction and
parameter optimization is at the centre of the continuous
foward algorithm (CFA) developed by Peng et al [15].

Unlike the OLS and similar forward selection algorithm, the
CFA algorithm optimizes the nonlinear parameters over the
parameter space as the network architecture evolves. This
results in an improved network modelling mechanism, as well
as reduced memory storage and computational complexity. A
multiple input-single-output (MISO) nonlinear RBF system
with m hidden nodes is defined as:

ŷ =

m∑
i=1

wiφi(x,σσσi, ci) (39)

where ŷ is the network output, x is the input vector,
φi(x,σσσi, ci) described as the nonlinear Gaussian function
of the ith hidden node with the adjustable parameters of
node center ci, node width σσσi and linear output weight wi.
The optimization of such parameters is achieved through the
minimization of the sum squared error (SSE) defined as:

J(w,σσσ, c) = (y− ŷ)T (y− ŷ) (40)

where y is the output vector from the training set. Suppose
the full regression matrix is represented by M candidates
available for cost function minimization, there exists a subset
k basis vectors such that the network outputs weight can be
computed as:

w = (ΦΦΦTkΦΦΦk)−1ΦΦΦTk y (41)

where ΦΦΦk = [φ1, ....., φk] represents regressor matrix subset
required for cost function minimization. The cost function in
(40) can then be expressed as:

J(ΦΦΦk) = yT
[
I−ΦΦΦk

(
ΦΦΦTkΦΦΦk

)−1
ΦΦΦTk

]
y (42)

Further optimization will require the addition of a basis
vector ∀φ ∈ (φk+1, ...., φM ) into the subset regression matrix
becoming ΦΦΦk+1 = [ΦΦΦk, φ]. Therefore the net reduction of the
cost function due to the new regression matrix is given as:

∆Jk+1(φ) = J(ΦΦΦk)− J([ΦΦΦk, φ]) (43)

Based on [25], a residual matrix parameter can be defined:

Rk =

{
I−ΦΦΦk

(
ΦΦΦTkΦΦΦk

)−1
ΦΦΦTk , 0 < k < M

I, k = 0
(44)

such that a column vector φ and the output vector y are
defined as:

φ(k) ∆
= Rkφ y(k) ∆

= Rky (45)

where φ(0) = φ and y(0) = y. The regressor and output
parameters can then be recursively updated given as:

φ(k) = φ(k−1) −
(φ

(k−1)
k )T (φ(k−1))

(φ
(k−1)
k )T (φ

(k−1)
k )

φ
(k−1)
k (46)

whereby φ
(k−1)
k is the regressor output from the previous

residual matrix computation. The properties of the residual
matrix to enable the recursive calculation of hidden node
regressors, is defined here [25]. Similarly the output of the
kth basis vector can be computed in a similar fashion:

y(k) = y(k−1) −
(φ

(k−1)
k )T (y(k−1))

(φ
(k−1)
k )T (φ

(k−1)
k )

φ
(k−1)
k (47)
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The net cost function contribution can then be computed as:

∆Jk+1(φ) =
[(y(k))Tφ(k)]2

(φ(k))Tφ(k)
(48)

In order to simplify the implementation of (46) and (47), a
k×M upper triangular matrix A can be introduced based on
the k basis vectors used for cost function reduction:

A ∆
= [ai,j ]k×M (49)

ai,j =


0, j < i

φTi Ri−1φi = (φ
(i−1)
i )T (φ

(i−1)
i ), j = i

φTi Ri−1φj = (φ
(i−1)
i )T (φ

(i−1)
j ), i < j < M

(50)

shown here in matrix format:

A =


a1,1 a1,2 a1,3 · · · a1,M

0 a2,2 a2,3 · · · a2,M

...
...

. . .
...

...
0 · · · 0 ak−1,M−k ak−1,M

0 · · · 0 0 ak,M


and ay and d which are two M × 1 vectors:

ay
∆
= [ai,y]M×1, ai,y = yTRkφi = (y(k))Tφ

(k)
i (51)

d ∆
= [di]M×1, di = φTi Rkφi = (φ

(k)
i )Tφ

(k)
i (52)

Furthermore, given that each basis vector is a function
of width and centre in homogeneous space, the adjustable
parameter of each hidden node can be grouped together such
that:

φ(x(t),σσσ, c) = Φ(x(t), ω) (53)

where for n× 1 input vector:

ω = [ω0, ω1, ..., ωn] = [σσσ, c] (54)

The net cost function contribution can then be computed as
function of ω such that:

∆Jk+1(ω) = C2(ω)/D(ω) (55)

where for N training samples:

C(ω) = (y(k))Tφ(k)(ω) =
N∑
t=1

y(k)φ(k)(x(t), ω) (56)

D(ω) = (φ(k)(ω))Tφ(k)(ω) =

N∑
t=1

(φ(k)(x(t), ω))2 (57)

The optimisation of the adjustable parameters results in the
maximization of the net contribution to the cost function
reduction for each k + 1th hidden node added to the regres-
sion matrix. This is obtained through a conjugate gradient
approach by obtaining the gradient of the cost function net
contribution for each adjustable parameter ω. This is defined
by differentiating (56) as given as:

∂(∆Jk+1(ω)

∂ωi
= ∇∆Jk+1(ω)

=
2C(ω)

D(ω)

(
y(k) − C(ω)

D(ω)
φ(k)(ω)

)T
φ(k)
ωi

(ω)

i = 0, 1, ..., n

(58)

where φ
(k)
ωi is the effect of the kth hidden node regressor

due the adjustable parameter set ωi along ith input vector
element. This is defined as:

φ
(s)
i (ω) = φ

(s−1)
i (ω)− ∂as,k+1(ω)

∂ωi

φ
(s−1)
s

as,s
s = 1, ...k i = 0, 1, ..., n

(59)

where the gradient change of the elements in the A matrix
can be defined as:

∂as,k+1(ω)

∂ωi
= (φ(s−1)

s (ω))Tφ
(s−1)
i (ω) (60)

The initialization of the algorithm at k = 0, the following
can be established:

φ(0)
ω0

(x(t), ω) = −2ω0

n∑
i=1

(xi(t)− ωi)2φ(x(t), ω)

φ(0)
ωi

(x(t), ω) = 2ω2
0(xi(t)− ωi)φ(x(t), ω)

i = 1, ..., n

(61)

The initial values of the adjustable parameters are given as:

ω
(0)
0 =

[
n∑
i=1

N∑
t=1

(xi(t)− ω(0)
i )2/N

]−1/2

(62)

The conjugate gradient optimisation is then used to compute
the ω

(p)
k+1 adjustable parameter set that will be maximize

∆Jk+1(ω
(p)
k+1). p is an iteration counter which is also used

to adjust the gradient of the contribution ∇∆Jk+1(ω
(p)
k+1)

through a line search procedure. φ(ω
(0)
k+1) can then be com-

puted along the elements of the triangular A matrix and then
updated to φ(ω

(k)
k+1) for the k + 1th hidden node according

to (46). Similarly the contribution to the output vector of
the k+ 1th hidden node can be computed according to (47).
Finally, the reduction of the SSE can be computed:

SSE(k+1) = SSE(k) −∆Jk+1(ω
(k)
k+1) (63)

The procedure is repeated until the net contribution falls
below a certain threshold η (a value of 0.1 was used) or
the SSE is below 1e− 3.

V. RESULTS

The generation of identification data was obtained using
a simulation model of the nonlinear quadcopter model, as
described in Section II, which was developed using MAT-
LAB S-functions and Simulink. Subsequently, the model
structure determination for RBF nonlinear identification was
performed using the correlation coefficients as described
in Section III-B. The highest coefficients to the dependent
variable were chosen for RBF training. Table I shows in-
dependent variables were chosen as a function of forward
speed. It can be noticed that model structure becomes noise-
independent above a certain forward speed. Given only one
independent variable chosen at hover, it is very difficult to
estimate flapping dynamic based on exciting pitch dynamics
(this will be confirmed later).
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TABLE I. RBF MODEL STRUCTURE SELECTION

Noise Hover 5 m/s 12 m/s 20 m/s
Ideal δlon δlon, az δlon, ax, az δlon, ax, az
Low δlon δlon, az δlon, ax, az δlon, ax, az
High δlon, w δlon, az δlon, ax, az δlon, ax, az

The CFA algorithm as described in Section IV was used for
training the RBF model structure. The number of neurons
and resultant SSE once ∆Jk+1 had reached zero is also given
(SSE is in brackets). This is shown in Table II. A maximum
number of neurons of 4 was achieved while keeping the SSE
low, even with reduced signal-to-noise ratio.

TABLE II. RBF TRAINING RESULTS - NEURONS(SSE)

Noise Hover 5 m/s 8 m/s 12 m/s 17 m/s 20 m/s
Ideal 5 (7.43) 3 (0.59) 3 (0.47) 3 (0.56) 3 (0.36) 3 (0.55)
Low 3 (7.41) 3 (1.63) 4 (1.21) 3 (1.09) 3 (0.98) 3 (0.99)
High 2 (7.89) 3 (3.42) 3 (2.78) 3 (2.31) 3 (2.63) 4 (1.59)

Figure 6 shows the prediction accuracy of the RBF model as a
function of forward speed and noise levels. It can be seen that
a hover and in a high noise environment (bad sensors), and
only one dependent variable for training, this produce really
inaccurate results. However, at high forward speeds, the RBF
prediction seems robust to noise levels while maintaining
prediction accuracy.
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Fig. 6. RBF prediction accuracy with various noise levels/forward speed

The longitudinal rotor flapping dynamic coefficient Ma1 was
computed as per Section III-A, which was based on the
predicted outputs of the RBF model as a function of forward
speed and noise levels. It is evident that the CFA algo-
rithm combined with the optimization of the inputs design,
achieved good results irrespective of noise levels. Although
the damping ratio could be computed from the output signal,
it was assumed at 0.261 (from the linear model).

VI. CONCLUSION

The nonlinear identification of unmanned quadcopter rotor
dynamics was presented using CFA for RBF neural mod-
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Fig. 7. Longitudinal rotor flapping dynamic coefficient with forward speed

elling. The combination of signal input design optimiza-
tion using the spectral density parameter, the RBF model
structure selection using the collinearity coefficient, and the
prediction accuracy of the CFA algorithm, has proven an
effective strategy for computing rotor flapping dynamic. The
success of such a method depends on the forward speed of
quadcopter, which is shown to be above 5 m/s. These results
will aid in the future research of real-time identification of
rotor dynamics using RBF neural networks and developing a
possible framework for quadrotor neural fault detection and
diagnosis.
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